CryexS 0 Posted January 20, 2019 Hi, I'm making an armored vehicle right now, my car is drifting , I'm guessing that my vehicle has a physx problem. Can you take a look? physx.hpp Spoiler /// splendid tutorial by RedPhoenix could be found at /// http://forums.bistudio.com/showthread.php?165390-Tutorial-Creating-Custom-Engine-Gearbox-and-Suspension-Vehicle-configuration thrustDelay = 0.2; /// initial delay to cause lesser slip when on 1st gear - thrust goes from zero to full in this time brakeIdleSpeed = 1.78; /// under what speed (in m/s) does the brake apply for a vehicle without thrust maxSpeed = 110; /// vehicle can go a bit over, but dramatically decreases thrust fuelCapacity = 45; wheelCircumference = 2.277; /// diameter of 725 antiRollbarForceCoef = 0.5; /// how strong is the anti-roll bar of vehicle preventing it to lose grip in turns (not any magical stuff, real ARB) antiRollbarForceLimit = 0.5; /// highest possible force of ARB antiRollbarSpeedMin = 20; /// the roll bar force gets from zero to full in range of min and max speed antiRollbarSpeedMax = 80; /// this simulates losing grip at high speed turns /// Gearbox and transmission via PhysX idleRpm = 900; // RPM at which the engine idles. redRpm = 6900; // RPM at which the engine redlines. class complexGearbox { GearboxRatios[] = {"R1",-3.231,"N",0,"D1",2.462,"D2",1.870,"D3",1.241,"D4",0.970,"D5",0.711}; TransmissionRatios[] = {"High",4.111}; // Optional: defines transmission ratios (for example, High and Low range as commonly found in offroad vehicles) gearBoxMode = "auto"; //gearbox can be of type: full-auto (only requires 'W' or 'S'), auto (requires shift between drive and reverse), semi-auto, manual moveOffGear = 1; // defines what gear an automatic or semi-automatic gearbox will move off from stationary in. 1 by default. driveString = "D"; // string to display in the HUD for forward gears. neutralString = "N"; // string to display in the HUD for neutral gear. reverseString = "R"; // string to display in the HUD for reverse gears. }; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /// PhysX parameters ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // <Description>: Defines simulation type of the vehicle. PhysX simulation ends with letter "x", "carx", "tankx" ... // <Type>: string // <Default>: (required) simulation = "carx"; // <Description>: Defines how much dampers react to random little bumps on surface. It's only visual effect, doesn't influence drive simulation, // only taken into account when calculating damper animation. // <Type>: float // <Default>: 0.0 dampersBumpCoef = 0.05; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Differential parameters ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // <Description>: A number of differential types are supported: 4-wheel drive with open differential, 4-wheel drive with limited slip, front-wheel drive // with open differential, front-wheel drive with limited slip, rear-wheel drive with open differential, rear-wheel drive with limited slip. // <Type>: string; acceptable values: "all_open", "all_limited", "front_open", "front_limited", "rear_open", "rear_limited" // <Default>: "all_limited" differentialType = "all_open"; // <Description>: Ratio of engine power that goes to front wheels out of total power for 4-wheel drive differentials. // Choosing a value greater than 0.5 delivers more torque to the front wheels, while choosing a value less than 0.5 // delivers more torque to the rear wheels. This value is ignored for front-wheel drive and rear-wheel drive differentials. // <Type>: float // <Default>: 0.5 frontRearSplit = 0.5; // <Description>: This is the largest possible relative difference between speed of front wheels. It helps to have outside wheels a bit faster // during the turns, but it prevents the faster wheel to take all the power while sliding. The power is shifted to slower wheel once the value is reached. // Locked differential has value of 1, the softer is the lock the greater should the value be. // This value is ignored except for front-wheel drive or four wheel drive with limited slip. // A good starting value is around 1.3. // <Type>: // <Default>: frontBias = 1.5; // <Description>: This is similar to frontBias except that it refers to the rear wheels. // This value is ignored except for rear-wheel drive or four wheel drive with limited slip. // A good starting value is around 1.3. // <Type>: float // <Default>: 1.3 rearBias = 1.3; // <Description>: This value is similar to the frontBias and rearBias, except that it refers to the sum of the front wheel rotation speeds and the sum // of the rear wheel rotation speeds. // This value is ignored except for four wheel drive with limited slip. // A good starting value is around 1.3. // <Type>: float // <Default>: 1.3 centreBias = 1.3; // <Description>: How fast is engine power distributed to the wheels. Stronger values mean more aggressive drive performance inclining to // slip a little while changing gears while weaker values are better for comfortable seamless ride. // <Type>: float // <Default>: 10.0 clutchStrength = 15.0; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Engine parameters ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // <Description>: Power of the engine in kW. // <Type>: float // <Default>: (required) enginePower = 40; // <Description>: This is the maximum rotational speed of the engine expressed in radians per second. It could be calculated from maximum // engine RPM like this: // maxOmega = (maxRpm*2*Pi)/60. // <Type>: float // <Default>: 600 which is cca 6000 rounds per minute. maxOmega = 720; // <Description>: This is the maximum torque that is ever available from the engine. This is expressed in Newton metres. // <Type>: float // <Default>: value calculated from enginePower according to http://en.wikipedia.org/wiki/Horsepower#Relationship_with_torque peakTorque = 350; // <Description>: These three values describe internal damping of the engine. Bigger values mean greater damping. Clutch disengaged value // is used while shifting gears, engine interpolates between clutch engaged and full throttle values according to throttle input. // We tend to use slightly lower clutch engaged values because it allows cars to turn more smoothly. // Typical values in range (0.25,3). The simulation can become unstable with damping rates of 0. // <Type>: float, float, float // <Default>: 0.08, 2.0, 0.35 dampingRateFullThrottle = 0.08; dampingRateZeroThrottleClutchEngaged = 0.35; dampingRateZeroThrottleClutchDisengaged = 0.35; // <Description>: This is a graph of peak torque versus engine rotational speed. // The x-axis of the curve is the relative engine speed; that is, the engine speed divided by the maximum engine speed. The y-axis of the curve is a // multiplier in range (0,1) that is used to scale the peak torque. It is good to keep the values in mind while setting changeGearMinEffectivity. // <Type>: Array[i][2] where i = number of samples, maximum 8; // <Default>: {{0.0, 0.8}, {0.33, 1.0}, {1.0, 0.8}} torqueCurve[] = {{0.000, 0.000}, {0.178, 0.800}, {0.250, 1.0}, {0.461, 0.900}, {0.900, 0.800}, {1.000, 0.300}}; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Gearbox parameters ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // <Description>: Value of minimal gear effectivity to hold current gear. If there is better gear and effectivity is below this value then change gear. // <Range>: (0,1) // <Type>: Array[i] where i = number of gears // <Default>: 0.95 for every value (Neutral = 0.15 Not sure how important this is but we want to kick out of neutral very quickly) changeGearMinEffectivity[] = {0.95, 0.15, 0.95, 0.95, 0.95, 0.95, 0.95}; // <Description>: The switch time describes how long it takes (in seconds) for a gear change to be completed. This needs to be set to aggresive shifting // or it would cause issues while trying to run aggressively (mainly during evading the enemies). // <Type>: float // <Default>: 0.01 switchTime = 0.31; // <Description>: Set the latency time of the gearbox, specified in s. // This is used to prevent instant shifting after changing gears - there is some power loss during gear change and it could seem that // previous gear is better for a brief time after shifting. // <Type>: float // <Default>: 2.0 latency = 1.0; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Wheels parameters ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// class Wheels { class LF { ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // General parameters ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // <Description>: Name of the bone, used for wheel and suspension animations. // <Type>: string // <Default>: "" boneName = "wheel_1_1_damper"; // <Description>: If true, wheel is steerable, false - wheel is fixed. // <Type>: bool // <Default>: (required) steering = true; // <Description>: Defines if wheel is on the right or left side of the vehicle // <Type>: string // <Default>: "right" side = "left"; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Wheel PX parameters ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // <Description>: Center of the wheel (axis) // <Type>: memory point // <Default>: (required) center = "wheel_1_1_axis"; // <Description>: Point on the outside rim of the tire, used to calculate radius of the wheel (distance between center and boundary). // <Type>: memory point // <Default>: (required) boundary = "wheel_1_1_bound"; // <Description>: This is the weight in kg of wheel including both rim and tyre. // <Type>: float // <Default>: 10.0 mass = 40; // <Description>: This is the wheel's moment of inertia about the rolling axis. Smaller values result in more slips in aggresive driving // while larger hamper the gain of speed. Good base to start with is this formula: // MOI = 0.5 * Mass * Radius * Radius // Some tweaking is needed after the computation, but it is still better than nothing. // <Type>: float // <Default>: 0.5 * WheelMass * WheelRadius * WheelRadius MOI = 3.3; // <Description>:The damping rate describes the rate at which a freely spinning wheel loses rotational speed. // Values in range (0.25, 2) seem like sensible values. Experimentation is always a good idea, even outside this range. // <Type>: float // <Default>: 0.1 dampingRate = 0.5; // <Description>: This is the value of the torque applied to the wheel when the brakes are maximally applied. Higher torques will lock the wheel // quicker when braking, while lower torques will take longer to lock the wheel. // A value of around 1500 is a good starting point for a vanilla wheel but a google search will reveal typical braking torques. One difficulty is // that these are often expressed by manufacturers as braking horsepower or in "pounds inches". The values required here are in "Newton metres". // <Type>: float // <Default>: 2500 maxBrakeTorque = 2500; // <Description>: This is the same as the max brake torque except for the handbrake rather than the brake. Typically, for a 4-wheeled car, // the handbrake is stronger than the brake and is only applied to the rear wheels. A value of 4000 for the rear wheels is a good starting point, // while a value of 0 is necessary for the front wheels to make sure they do not react to the handbrake. // <Type>: float // <Default>: 2*maxBrakeTorque maxHandBrakeTorque = 1; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Wheel simulation parameters ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // <Description>: This is the direction of the suspension in the downward direction in the rest configuration of the vehicle. A vector that // points straight downwards is a good starting point. // <Type>: Array[3] // <Default>: {0, -1, 0} suspTravelDirection[] = {0, -1, 0}; // <Description>: This is the application point of the suspension force. // <Type>: memory point // <Default>: center suspForceAppPointOffset = "wheel_1_1_axis"; // <Description>: This is almost the same as the suspension force app point except for the lateral and longitudinal forces that develop on the tire. // A good starting point is to duplicate the suspension force application point. // <Type>: memory point // <Default>: suspForceAppPointOffset tireForceAppPointOffset = "wheel_1_1_axis"; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Suspension parameters ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // <Description>: These values describe the maximum compression and elongation in metres that the spring can support. // <Type>: float // <Default>: 0.15 maxCompression = 0.1; mMaxDroop = 0.15; // <Description>: This is the mass in kg that is supported by the suspension spring. // <Type>: float // <Default>: vehicleMass/numberOfWheels sprungMass = 350.0; // <Description>: This is the strength of the suspension spring in Newtons per metre. // springStrength = naturalFrequency * naturalFrequency * sprungMass // <Type>: float // <Default>: sprungMass*5,0*5,0 springStrength = 22600; // <Description>: This describes the rate at which the spring dissipates the energy stored in the spring. // Basic equiation for this is // springDamperRate = dampingRatio * 2 * sqrt(springStrength * sprungMass) // where dampingRatio = 1 mean critical damping (critically damped pendulum should get back to start point in every swing) // <Type>: float // <Default>: 0,4*2*sqrt(springStrength*sprungMass) springDamperRate = 8680; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Tire parameters ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // <Description>: Increasing this value will result in the tire attempting to generate more longitudinal force when the tire is slipping. // Typically, increasing longitudinal stiffness will help the car accelerate and brake. The total tire force available is limited by the // load on the tire so be aware that increases in this value might have no effect or even come at the expense of reduced lateral force. // <Type>: float // <Default>: 10000 longitudinalStiffnessPerUnitGravity = 10000; // <Description>: These values together describe the lateral stiffness per unit lateral slip (in radians) of the tire. // <Type>: float, float // <Default>: 25, 180 latStiffX = 25; latStiffY = 18000; // <Description>: These six values describe a graph of friction as a function of longitudinal slip. // A good starting point for this is a flat graph of friction vs slip with these values: // frictionVsSlipGraph[0][0]=0.0 // frictionVsSlipGraph[0][1]=1.0 // frictionVsSlipGraph[1][0]=0.5 // frictionVsSlipGraph[1][1]=1.0 // frictionVsSlipGraph[2][0]=1.0 // frictionVsSlipGraph[2][1]=1.0 // <Type>: Array[3][2] // <Default>: {{0, 1}, {0.5, 1}, {1,1}} frictionVsSlipGraph[] = {{0, 1}, {0.5, 1}, {1,1}}; }; class LR: LF { boneName = "wheel_1_2_damper"; steering = false; center = "wheel_1_2_axis"; boundary = "wheel_1_2_bound"; suspForceAppPointOffset = "wheel_1_2_axis"; tireForceAppPointOffset = "wheel_1_2_axis"; maxHandBrakeTorque = 3000; latStiffY = 180; sprungMass = 190.0; springStrength = 4750; springDamperRate = 1760; }; class RF: LF { boneName = "wheel_2_1_damper"; center = "wheel_2_1_axis"; boundary = "wheel_2_1_bound"; suspForceAppPointOffset = "wheel_2_1_axis"; tireForceAppPointOffset = "wheel_2_1_axis"; steering = true; side = "right"; }; class RR: RF { boneName = "wheel_2_2_damper"; steering = false; center = "wheel_2_2_axis"; boundary = "wheel_2_2_bound"; suspForceAppPointOffset = "wheel_2_2_axis"; tireForceAppPointOffset = "wheel_2_2_axis"; maxHandBrakeTorque = 3000; latStiffY = 180; sprungMass = 190.0; springStrength = 4750; springDamperRate = 1760; }; }; Share this post Link to post Share on other sites
.kju 3245 Posted January 23, 2019 best join the arma discord and reach out in the configs channel Share this post Link to post Share on other sites